267 research outputs found

    RNA content in motor and sensory neurons and surrounding neuroglia of mouse spinal cord under conditions of hypodynamia and following normalization

    Get PDF
    Male white mice were subjected to two and three week hypodynamia and then decapitated. Cytoplasmic RNA content per cell was measured by means of ultraviolet cytospectrometry. Changes in RNA content are shown, and the dynamics of the reparative processes of cells are discussed

    RNA content in motor and sensory neurons and surrounding neuroglia of mouse spinal cord under conditions of hypodynamia and following normalization

    Get PDF
    The differences in the dynamics of reparative processes in RNA metabolism within the neuron-neuroglia unit after the cessation of hyper- and hypodynamia is dicussed. The role of neuroglia is stressed in compensatory, reparative and trophic processes in the nervous system as well as the possibility in an adaptation at the cellular level

    Comment on "The gravitomagnetic influence on gyroscopes and on the lunar orbit"

    Get PDF
    Analysis of the gauge residual freedom in the relativistic theory of lunar motion demonstrates that lunar laser ranging (LLR) is not currently capable to detect gravitomagnetic effects.Comment: 1 page, accepted to Physical Review Letter

    Binary spinning black hole Hamiltonian in canonical center-of-mass and rest-frame coordinates through higher post-Newtonian order

    Full text link
    The recently constructed Hamiltonians for spinless binary black holes through third post-Newtonian order and for spinning ones through formal second post-Newtonian order, where the spins are counted of zero post-Newtonian order, are transformed into fully canonical center-of-mass and rest-frame variables. The mixture terms in the Hamiltonians between center-of-mass and rest-frame variables are in accordance with the relation between the total linear momentum and the center-of-mass velocity as demanded by global Lorentz invariance. The various generating functions for the center-of-mass and rest-frame canonical variables are explicitly given in terms of the single-particle canonical variables. The no-interaction theorem does not apply because the world-line condition of Lorentz covariant position variables is not imposed.Comment: 18 pages, no figure

    Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits

    Get PDF
    The determination of velocities of stars from precise Doppler measurements is described here using relativistic theory of astronomical reference frames so as to determine the Keplerian and post-Keplerian parameters of binary systems. We apply successive Lorentz transformations and the relativistic equation of light propagation to establish the exact treatment of Doppler effect in binary systems both in special and general relativity theories. As a result, the Doppler shift is a sum of (1) linear in c1c^{-1} terms, which include the ordinary Doppler effect and its variation due to the secular radial acceleration of the binary with respect to observer; (2) terms proportional to c2c^{-2}, which include the contributions from the quadratic Doppler effect caused by the relative motion of binary star with respect to the Solar system, motion of the particle emitting light and diurnal rotational motion of observer, orbital motion of the star around the binary's barycenter, and orbital motion of the Earth; and (3) terms proportional to c2c^{-2}, which include the contributions from redshifts due to gravitational fields of the star, star's companion, Galaxy, Solar system, and the Earth. After parameterization of the binary's orbit we find that the presence of periodically changing terms in the Doppler schift enables us disentangling different terms and measuring, along with the well known Keplerian parameters of the binary, four additional post-Keplerian parameters, including the inclination angle of the binary's orbit, ii. We briefly discuss feasibility of practical implementation of these theoretical results, which crucially depends on further progress in the technique of precision Doppler measurements.Comment: Minor changes, 1 Figure included, submitted to Astrophys.

    Topochemical differences in the amount of RNA in the motoneurons of the spinal chord in hypoxia and hypokinesia

    Get PDF
    Reactions to hypoxia and hypoknesia were compared by measuring charges in the amount of ribonucleic acid (RNA) in the cytoplasm of neurons of the intumescentia cervicalis and lumbalis. Animals were subjected to hypoxia, hypokinesia and both combined and a control group to neither. A total of two groups of motoneurons were compared, one innervating the respiratory musculature, the other the musculature of the lower extremities, so that hypoxic hypoxia would probably affect the first group primarily and hypokinesia the second. Results indicate that neither affect the amount of RNA in the neurons of the first group but a significant increase is noted in neurons of the second group. Other significant results are reported

    Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers

    Get PDF
    General relativistic deflection of light by mass, dipole, and quadrupole moments of gravitational field of a moving massive planet in the Solar system is derived. All terms of order 1 microarcsecond are taken into account, parametrized, and classified in accordance with their physical origin. We calculate the instantaneous patterns of the light-ray deflections caused by the monopole, the dipole and the quadrupole moments, and derive equations describing apparent motion of the deflected position of the star in the sky plane as the impact parameter of the light ray with respect to the planet changes due to its orbital motion. The present paper gives the physical interpretation of the observed light-ray deflections and discusses the observational capabilities of the near-future optical (SIM) and radio (SKA) interferometers for detecting the Doppler modulation of the radial deflection, and the dipolar and quadrupolar light-ray bendings by the Jupiter and the Saturn.Comment: 33 pages, 10 figures, accepted to Phys. Rev.

    A generalized lens equation for light deflection in weak gravitational fields

    Full text link
    A generalized lens equation for weak gravitational fields in Schwarzschild metric and valid for finite distances of source and observer from the light deflecting body is suggested. The magnitude of neglected terms in the generalized lens equation is estimated to be smaller than or equal to 15 Pi/4 (m/d')^2, where m is the Schwarzschild radius of massive body and d' is Chandrasekhar's impact parameter. The main applications of this generalized lens equation are extreme astrometrical configurations, where 'Standard post-Newtonian approach' as well as 'Classical lens equation' cannot be applied. It is shown that in the appropriate limits the proposed lens equation yields the known post-Newtonian terms, 'enhanced' post-post-Newtonian terms and the Classical lens equation, thus provides a link between these both essential approaches for determining the light deflection.Comment: 11 pages, 3 figure

    The Unlock Project: A Python-based framework for practical brain-computer interface communication “app” development

    Get PDF
    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software “app” development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50–60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis

    Horava-Lifshitz gravity: tighter constraints for the Kehagias-Sfetsos solution from new solar system data

    Full text link
    We analytically work out the perturbation induced by the Kehagias-Sfetsos (KS) space-time solution of the Horava-Lifshitz (HL) modified gravity at long distances on the two-body range for a pair of test particles A and B orbiting the same mass M. We apply our results to the most recently obtained range-residuals \delta\rho for some planets of the solar system (Mercury, Mars, Saturn) ranged from the Earth to effectively constrain the dimensionsless KS parameter \psi_0 for the Sun. We obtain \psi_0 >= 7.2 x 10^-10 (Mercury), \psi_0 >= 9 x 10^-12 (Mars), \psi_0 >= 1.7 x 10^-12 (Saturn). Such lower bounds are tighter than other ones existing in literature by several orders of magnitude. We also preliminarily obtain \psi_0 >= 8 x 10^-10 for the system constituted by the S2 star orbiting the Supermassive Black Hole (SBH) in the center of the Galaxy.Comment: LaTex2e, 15 pages, 1 table, 3 figures, 31 references. Version matching the one at press in International Journal of Modern Physics D (IJMPD
    corecore